### **Welcome to The Business of Pediatrics**

- 5 30 minute sessions
  - How Much Should I Pay An Employed Physician?
  - Marketing Your Practice
  - The True Cost of Immunizations
  - Take Back Your Practice, Patients, and Revenue
  - Social Media

High level overviews

Index cards for questions during 2 Q&A sessions

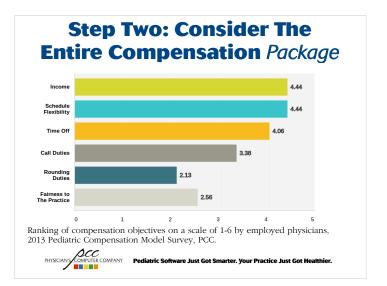


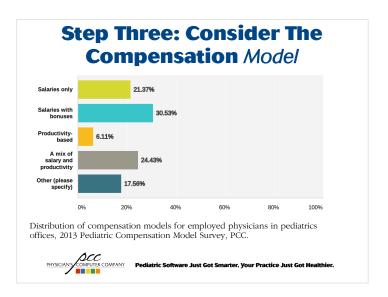
### **How Much Should** I Pay An Employed Clinician?

**Chip Hart Physician's Computer Company July 2013** 



DCC
PHYSICIANS COMPUTER COMPANY
Pediatric Software Just Got Smarter. Your Practice Just Got Healthier.


## **Assumption**


Your practice is not so desperate for an additional clinician that you are willing to take a financial loss in order to employ one.



PHYSICIANS COMPANY Pediatric Software Just Got Smarter. Your Practice Just Got Healthier.

## Step One: Hire The Right One In the First Place! Verden Group Your Partner in Practice How to Engage Employed Physicians PCC User's Conference 10:45am-11:45am, July 17, 2013





## The Math $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x-m)^2}{n} + \frac{dx}{dx} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}{dx} = \frac{1}{2} \left[ \frac{(x+a)^2}{n} + \frac{1}{2} \frac{(x+a)^2}{n} \right]$ $\frac{dx}$

# The Math 33% of Payments 60% Overhead Your "margin" (of error). PHYSICIANS COMPUTER COMPANY Pediatric Software Just Got Smarter. Your Practice Just Got Healthier.

## The Math

A good rule of thumb: 25-40% of expected payments is fair to the practice and to the employed physician.



Pediatric Software Just Got Smarter. Your Practice Just Got Healthic